Contents

Necessary Tools, Devices, Materials ... 3
General Information ... 4
PressurePro TPMS Connection ... 5
Configuring of the Tracking Device to Operate with PressurePro TPMS ... 6
Setting of Monitoring Software... 8
Necessary Tools, Devices, Materials

To connect Galileosky GLONASS/GPS tracking devices (hereinafter – tracking device) one should have:

1. Electrical tools.
2. Windows-based computer with the installed program of configuration of the tracking devices – "Configurator". You can download it here https://galileosky.com/podderzhka/programmyi.html
3. Set of PressurePro tire-pressure monitoring system.
General Information

The Galileosky tracking devices (hereinafter – tracking device) can operate with PressurePro tire-pressure monitoring system (hereinafter – PressurePro TPMS). PressurePro TPMS is a wireless electronic control system composed of the following functional parts:

1. **Monitor** (Pic. 1) – the display to view the information about tire pressure. With the help of the monitor you can configure PressurePro TPMS.

![PressurePro TPMS monitor](image1.png)

2. **Pressure sensors** (Pic. 2). Pressure sensor, which is screwed on the nipple of the wheels of the vehicle, transmits a coded radio signal to the monitor, located in the cabin of the vehicle. In case of deviation of pressure in any of the wheels from a specified base values - the display shows current pressure and the sound signal is heard.

![PressurePro pressure sensors](image2.png)
RS232. Connection of Tire-Pressure Monitoring System PressurePro
(version 5 dated from August 8, 2018)

PressurePro TPMS Connection

Connection of PressurePro TPMS to Galileosky tracking device is carried out in accordance with the scheme of Picture 3 of this manual.

ATTENTION! Grounds (GND) of the tracking device and PressurePro TPMS must be connected, RS232 contacts must be connected strictly according to the scheme: RX of PressurePro TPMS - TXD0 (1) of the tracking device and TX of PressurePro TPMS - RXD0(1) of the tracking device. PressurePro TPMS is powered separately.
Configuring of the Tracking Device to Operate with PressurePro TPMS

Operation of the Galileosky tracking device with PressurePro TPMS is possible with the firmware not lower than the 201st version.

Settings of Galileosky tracking device are performed via the Configurator in the following order:

Go to the “Settings” tab -> “Digital inputs” and select “Pressure Pro” in the RS232 field (Pic. 4).

Go to the “Settings” tab -> “Track” and select “Dynamic” in the “Internal archive structure” field (Pic. 5).

ATTENTION! For tracking devices Galileosky Base Block and 7.0 versions the setting of dynamic structure mode is not needed.

Go to the “Settings” tab -> “Protocol” and tick the field “Main packet” in “PressurePro” line and press “Apply” button (Pic. 6).
In normal state PressurePro TPMS data is transmitted to the monitoring server with a frequency once in 5 (five) minutes. In case if there is a sign of emergency transfer in PressurePro TPMS data, the Galileosky tracking device immediately begins data transmission to the monitoring server.
RS232. Connection of Tire-Pressure Monitoring System PressurePro
(version 5 dated from August 8, 2018)

Setting of Monitoring Software

Start the monitoring software and make sure that PressurePro TPMS data are being sent to the program (Pic. 7).

If necessary, create a pressure and (or) temperature sensor according to recommendations of the producer of the monitoring software (Pic. 8).

Connection of PressurePro TPMS to the Galileosky tracking device is completed; the tracking device is ready to operate.

RSA “Galileosky”, LLC produces satellite monitoring equipment for GPS and GLONASS real time vehicles monitoring. The tracking devices determine the mobile object location recording the time and route as points with geographical coordinates and send the data to the server to be further processed and sent to the traffic controller panel.

In addition, a number of other vehicle parameters are recorded: the state of analog and discrete inputs of the tracking device and the state of digital interfaces.

The tracking devices can be used in any vehicle.